Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transl Res ; 16(3): 738-754, 2024.
Article in English | MEDLINE | ID: mdl-38586115

ABSTRACT

OBJECTIVES: While dysregulation of DSCC1 (DNA Replication And Sister Chromatid Cohesion 1) has been established in breast cancer and colorectal cancer, its associations with other tumors remain unclear. Therefore, this study was launched to explore the role of DSCC1 in pan-cancer. METHODOLOGY: In this study, we investigate the biological functions of DSCC1 across 33 solid tumors, elucidating its role in promoting oncogenesis and progression in various cancers through comprehensive analysis of multi-omics data. RESULTS: We conducted a comprehensive analysis of DSCC1 expression using RNA-seq data from TCGA and GTEx databases across 30 cancer types. Striking variations were observed, with significant overexpression of DSCC1 identified in numerous cancers. Elevated DSCC1 level was strongly associated with poorer prognosis, shorter survival, and advanced tumor stages in kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), as indicated by Kaplan-Meier curves and GEPIA2 analysis. Further investigation into the molecular mechanisms revealed reduced DNA methylation in the DSCC1 promoter region in KIRP, LIHC, and LUAD, supporting enhanced RNA transcription. Protein expression analysis via the Human Protein Atlas (HPA) corroborated mRNA expression findings, showcasing elevated DSCC1 protein in KIRP, LIHC, and LUAD tissues. Mutational analysis using cBioPortal revealed alterations in 0.4% of KIRP, 17% of LIHC, and 5% of LUAD samples, predominantly characterized by amplification. Immune cell infiltration analysis demonstrated robust positive correlations between DSCC1 expression and CD8+ T cells, CD4+ T cells, and B cells, influencing the tumor microenvironment. STRING and gene enrichment analyses unveiled DSCC1's involvement in critical pathways, emphasizing its multifaceted impact. Notably, drug sensitivity analysis highlighted a significant correlation between DSCC1 mRNA expression and responses to 78 anticancer treatments, suggesting its potential as a predictive biomarker and therapeutic target for KIRP, LIHC, and LUAD. Finally, immunohistochemistry staining of clinical samples validated computational results, confirming elevated DSCC1 protein expression. CONCLUSION: Overall, this study provides comprehensive insights into the pivotal role of DSCC1 in KIRP, LIHC, and LUAD initiation, progression, and therapeutic responsiveness, laying the foundation for further investigations and personalized treatment strategies.

2.
Nat Rev Nephrol ; 19(8): 481-490, 2023 08.
Article in English | MEDLINE | ID: mdl-37277461

ABSTRACT

Haemodialysis is life sustaining but expensive, provides limited removal of uraemic solutes, is associated with poor patient quality of life and has a large carbon footprint. Innovative dialysis technologies such as portable, wearable and implantable artificial kidney systems are being developed with the aim of addressing these issues and improving patient care. An important challenge for these technologies is the need for continuous regeneration of a small volume of dialysate. Dialysate recycling systems based on sorbents have great potential for such regeneration. Novel dialysis membranes composed of polymeric or inorganic materials are being developed to improve the removal of a broad range of uraemic toxins, with low levels of membrane fouling compared with currently available synthetic membranes. To achieve more complete therapy and provide important biological functions, these novel membranes could be combined with bioartificial kidneys, which consist of artificial membranes combined with kidney cells. Implementation of these systems will require robust cell sourcing; cell culture facilities annexed to dialysis centres; large-scale, low-cost production; and quality control measures. These challenges are not trivial, and global initiatives involving all relevant stakeholders, including academics, industrialists, medical professionals and patients with kidney disease, are required to achieve important technological breakthroughs.


Subject(s)
Kidneys, Artificial , Wearable Electronic Devices , Humans , Quality of Life , Renal Dialysis , Dialysis Solutions
3.
Membranes (Basel) ; 8(3)2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072657

ABSTRACT

Hollow fiber membranes (HFM) are fabricated from blend solutions of a polyethersulfone (PESU) with a sulfonated PESU (sPESU) or a sulfonated polyphenylenesulfone (sPPSU). The influence of different additives in the dope solution and different bore fluids on the HFM are studied. The addition of poly(sodium 4-styrene sulfonate) (PSSNa)/ethylene glycol (EG) to the dope solution results in an increased water flux of the HFM compared to its counterparts without this additive system. The morphology of the hollow fibers is examined by scanning electron microscopy (SEM). The inner surface of the hollow fibers is studied by X-ray photoelectron spectroscopy (XPS), and it is found that water permeation through the hollow fiber membranes is facilitated due to the change in morphology upon the addition of the PSSNa/EG additive system, but not by the presence of hydrophilic sulfonic acid groups on the membrane surface.

4.
Sci Rep ; 7(1): 8050, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28808251

ABSTRACT

Despite the need for sophisticated instrumentation, breath figure assembly (BFA) methods are restricted to produce macroporous films on a tiny scale so far. The current study narrates the fabrication of macroporous films in hollow fiber geometry which extends to adopt the method for continuous production of isoporous surfaces from commercially available low-priced polymer materials. The fabrication of the films in the hollow fiber geometry is carried out by a co-centric quadruple orifice spinneret through which four different liquids are co-extruded simultaneously: bore fluid (to fill the lumen of the fiber), support layer solution, glycerol, and an isoporous film forming solution through the outer most orifice. The extruded entities plunge into a coagulation bath after passing a definite air gap. The implementation of the concept of diffuse-in, droplet formation, and then condense-out behavior of glycerol in a co-extrusion method of hollow fiber spinning makes macroporous film formation possible in an interminable way sidestepping the use of breath figure assembly method. Moreover, the continuous film formation by the proposed mechanism is also authenticated in flat sheet geometry by employing two casting blades in a casting machine. The structure of the films is analyzed by scanning electron microscopy (SEM).

5.
J Family Med Prim Care ; 5(2): 477-478, 2016.
Article in English | MEDLINE | ID: mdl-27843868

ABSTRACT

The multiple pterygium syndrome is consist of wide range of fetal malformations which have a genetic linkage. A defect in embryonic acetylcholine receptor which can be inherited as autosomal recessive, autosomal dominant, or X-linked fashion is the cause of this syndrome. We present a sporadic case of lethal multiple pterygium syndrome.

6.
Macromol Rapid Commun ; 37(5): 414-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26685710

ABSTRACT

A double-layer hollow fiber is fabricated where an isoporous surface of polystyrene-block-poly(4-vinylpyridine) is fixed on a support layer by co-extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope-energy-dispersive X-ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in-process H-bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double-layer hollow fiber.


Subject(s)
Membranes, Artificial , Polystyrenes/chemistry , Polyvinyls/chemistry , Pyridines/chemistry , Sulfur/chemistry , Electrochemical Techniques , Hydrogen Bonding , Microscopy, Electron, Scanning , Porosity , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...